Math 347 Worksheet Worksheet 11: Permutations of *n* elements November 7, 2018

- 1) Consider S_n the set of permutations of n elements.
 - (i) Prove that any element $s \in S_n$ can be written as the composite

$$s = t^1 \circ \dots t^k,$$

where each t^i is a transposition.

(ii) Fix $\ell \in [n]$. Prove that the transpositions in the above can all be taken to be

$$t^i = t_{\ell,j}$$

for some $j \in [n]$, where $t_{\ell,j}$ is the transposition that swaps ℓ and j.

2) Prove that for any element $s \in S_n$ there exists $k \leq n$ such that¹

$$s^k = e.$$

- 3) Draw a functional digraph of an element $s \in S_n$. What does the condition from the previous exercise mean in terms of the graph?
- 4) For a natural number n a partition of n is a way of writing n as a sum of positive numbers.
 - (i) list the partitions of 6;
 - (ii) prove that the number of partitions of n with k parts equals the number of partitions of n with largest part k.
- 5) (Extra) Consider a square in \mathbb{R}^2 with vertices (1,1), (1,-1), (-1,-1) and (-1,1). Let r be the function $r : \mathbb{R}^2 \to \mathbb{R}^2$ given by rotation of 90 degrees, let $s : \mathbb{R}^2 \to \mathbb{R}^2$ be the function that reflects the points around the line x = y (Make a drawing.). Let D_4 be the set of functions obtained by considering compositions of r or s any number of times.
 - (a) prove that D_4 is finite and compute its size;
 - (b) prove that any element $a \in D_4$ preserves the square;
 - (c) prove that D_4 is not equal to S_n for any n. Can you find an n such that $D_4 \subset S_n$?

¹Here s^k means one composes s with itself k times.